• Users Online: 766
  • Print this page
  • Email this page
Year : 2017  |  Volume : 1  |  Issue : 2  |  Page : 9-15

Assessment of skeletal muscle endurance using twitch electrical stimulation and accelerometer-based mechanomyography

Department of Kinesiology, University of Georgia, Athens, GA, USA

Correspondence Address:
Kevin K McCully
330 River Road Athens, GA 30602
Login to access the Email id

Source of Support: None, Conflict of Interest: None

Rights and PermissionsRights and Permissions

Previous studies have used twitch electrical stimulation and accelerometer-based mechanomyography (aMMG) to evaluate muscle function in clinical populations. However, the reproducibility and validity of the methodology has not been defined. This study evaluated the reproducibility and validity of twitch electrical stimulation and aMMG as an assessment of muscle endurance. Participants were healthy males and females 21.8±1.9 years of age. Muscle twitch acceleration was measured using an accelerometer placed over the surface of the muscle. The relationship between acceleration and torque was measured during twitch stimulation of the vastus lateralis muscle. Muscle endurance of the forearm and gastrocnemius was measured during 9 minutes of twitch electrical stimulation, in three stages (3min/stage) of increasing frequency (2Hz, 4Hz, and 6Hz). An Endurance Index (EI) was calculated as the percent of acceleration at the end of each stimulation stage relative to the peak acceleration. Oxygen saturation was measured using near-infrared spectroscopy. Results showed that acceleration correlated with torque during twitch electrical stimulation of the vastus lateralis (mean R2= 0.96±0.04; p<0.05). Measures of forearm EI reproducibility were CV= 2.5-7.4%. EI was significantly higher (12.1%) in the gastrocnemius compared to the forearm (p<0.01). Muscle oxygen saturation was not reduced during stimulation of the forearm (72.6±9.8% at 2Hz, 73.2±11.6% at 4Hz, and 71.0±12.5% at 6Hz) compared to resting baseline (74.3±15.1%) (p>0.1). This study found that EI is a reproducible measure of muscle endurance that is not influenced by declines in oxygen saturation.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded712    
    Comments [Add]    

Recommend this journal